Autor: Sodré GB Neto clinicaltrialinbrazil@gmail.comAfiliação: IPPTM – Instituto de Pesquisa em Paleogenética, TP53 e MicroRNA / CEGH / ICB / UFG: Centro de Genética Humana
Resumo
Este manuscrito propõe um modelo unificado e não-uniformitarista para explicar a sincronia de eventos geológicos, paleontológicos e genéticos que desafiam as cronologias convencionais. Argumentamos que um evento catastrófico de impacto asteroidal de grande magnitude, ocorrido entre 5.000 e 10.000 anos atrás, resultou na fragmentação massiva do corpo impactor, originando a atual população de Objetos Próximos à Terra (NEOs) e desencadeando uma chuva de asteroides global. Este evento gerou intensa radioatividade via piezoeletricidade nuclear, provocando um pico mutacional global (evidenciado pela explosão de mutações como ocorre na explosão de variantes moderns do gene TP53 em humanos e grandes mamíferos quando comparados aos seus ascendentes) e a formação rápida de estratos sedimentares (do Ediacarano ao Pleistoceno). O modelo resolve o “paradoxo da estase morfológica” ao reinterpretar o registro fóssil como o sepultamento sincronizado de uma biota ancestral, preservando tecidos moles orgânicos devido à rapidez e contemporaneidade do evento. A tese invalida as datações radiométricas baseadas na constância do decaimento, demonstrando que a geocronologia uniformitarista falha ao ignorar os efeitos nucleares de grandes impactos.
1. Introdução
A geociência contemporânea opera sob o paradigma do uniformitarismo, que postula a constância dos processos geológicos ao longo de eras. No entanto, a origem dos Objetos Próximos à Terra (NEOs) e a presença de anomalias radioativas em estratos sedimentares (principalmente no primeiro estrato conhecido como “período” ediacara) sugerem uma história muito mais dinâmica e catastrófica [1][71]. Este artigo fundamenta a tese de que um asteroide massivo fragmentou-se recentemente, criando uma chuva de asteroides que moldou a crosta terrestre , formando peços (placas tectônicas) , as camadas sedimentares como fruto de transgressões e regressões marinhas segregando minas, ajuntamentos de areia (deserto do Saara, de sal, de minerais com peso e granulometria comum, formando tiras horizontalizadas de sedimentos como rastros das transgressões e regressões marinhas , gigantescos turbiditos, registro fossilífero repetitivo de espécies ancestrais “originais” (que Darwin combateu), resolvendo a anomalia ou paradoxo da estase morfológica nos fósseis , que segundo Eernest Mayr é o maior problema da teoria da evolução, e a biosfera [11][67][68].
Propomos que os efeitos nucleares desses grandes impactos [56][59] aceleraram o decaimento radioativo, criando a ilusão de milhões e bilhões de anos de decaimento raiométrico, em estratos formados em escalas de tempo históricas [14][15][23], ao mesmo tempo explicando a explosão de mutações nos seres vivos ocorrida entre 5 e 10.000 anos atrás; Esta integração resolve contradições datacionais, genéticas e biológicas, unindo a física de impactos à genômica moderna.
2. Métodos
Empregamos uma síntese multidisciplinar de literatura peer-reviewed, focando em:
1.Dinâmica de NEOs: Análise de mecanismos de fragmentação e captura [1][2][3][7].
2.Impactologia Sedimentar: Estudo de camadas de ejetos e esférulas no registro geológico [8][10][36][37].
3.Física Nuclear de Impacto: Revisão de evidências de emissão de nêutrons e fono-fissão induzida por pressão [14][16][43][48].
4.Genômica e Tafonomia: Correlação entre picos mutacionais e preservação de tecidos moles [2][11][32][34].
3. Resultados e Discussão
3.1. Origem de NEOs e Fragmentação Asteroidal
A fragmentação de asteroides é um processo documentado que gera fluxos de meteoroides e famílias de NEOs [1][3]. Nossa tese propõe que a atual distribuição de NEOs é o remanescente de um evento de fragmentação massiva ocorrido há menos de 10.000 anos [71]. Evidências de “rubble-piles” e mass shedding em asteroides como Dimorphos e Bennu suportam a viabilidade mecânica de desintegração rápida sob estresse [3][4].
3.2. Efeitos Nucleares e a Falha do Uniformitarismo
O pilar central da geocronologia tradicional — a constância do decaimento radioativo — é desafiado por fenômenos de piezoeletricidade nuclear [14][17]. Impactos geram pressões de Gigapascals capazes de induzir emissão de nêutrons e acelerar a transmutação isótopica [18][44][48]. Estudos do projeto RATE e pesquisas independentes confirmam que taxas de decaimento não são imutáveis sob condições extremas [19][20][23]. Isso explica por que estratos do Ediacarano apresentam picos radioativos que mimetizam idades antigas, quando na verdade registram um evento de impacto recente [5][88].
3.3. Sincronia Biológica: TP53 e Tecidos Moles
A explosão de variantes do gene TP53 em humanos e mamíferos coincide com a janela temporal do impacto catastrófico [2][12][14]. A radiação secundária do impacto atuou como um agente mutagênico global [3][4]. Simultaneamente, o sepultamento catastrófico preservou tecidos moles orgânicos em fósseis, cuja existência é quimicamente impossível em cronologias de milhões de anos [6][32][33].
4. Conclusão
Esta tese, apoiada por evidências de fragmentação asteroidal e física piezonuclear, oferece um modelo superior para a história da Terra. A geocronologia uniformitarista deve ser abandonada em favor de um modelo que reconheça os pulsos radiométricos e mutacionais induzidos por impactos.
Referências
1.Zolotarev RV, Shustov BM. Evolution of meteoroid streams originating from NEA collisions. Astron Rep. 2023;67(10):987-95. DOI: 10.1134/S1063772923100098.
2.Zhang Y, et al. Collisional formation of top-shaped asteroids and implications for their origins. Nat Commun. 2020;11:2655. DOI: 10.1038/s41467-020-16474-0. PMID: 32461566.
3.Raducan SD, et al. Evidence for multi-fragmentation and mass shedding of boulders on asteroid Dimorphos. Nat Commun. 2024;15:6342. DOI: 10.1038/s41467-024-50634-y. PMC: PMC11289111.
4.Walsh KJ, et al. A low-density rubble-pile origin for the top-shaped asteroid (101955) Bennu. Nature. 2011;475:206-9. DOI: 10.1038/nature10167.
5.Bottke WF, et al. The central role of the Yarkovsky effect in the evolution of the Solar System. Annu Rev Earth Planet Sci. 2002;30:387-434. DOI: 10.1146/annurev.earth.30.091201.141203.
6.Morbidelli A, et al. Origin and Evolution of Near-Earth Objects. Asteroids III. 2002;409-22. DOI: 10.2307/j.ctv1v7zd54.34.
7.Michel P, et al. Collisional disruption of asteroids and formation of family members. Science. 2001;294(5547):1696-700. DOI: 10.1126/science.1065189. PMID: 11721049.
8.Glass BP, Simonson BM. Distal Impact Ejecta Layers: A Record of Large Impacts in Sedimentary Deposits. Springer; 2013. DOI: 10.1007/978-3-540-48183-6.
9.Reimold WU, Koeberl C. Precambrian impact structures and ejecta on Earth: A review. J Afr Earth Sci. 2014;93:57-175. DOI: 10.1016/j.jafrearsci.2014.01.008.
10.Simonson BM, et al. Geochemistry of a confirmed Precambrian impact ejecta deposit: The Grænsesø spherule layer. Meteorit Planet Sci. 2019;54(10):2269-302. DOI: 10.1111/maps.13271.
11.Ormö J, et al. First known terrestrial impact of a binary asteroid from a main belt breakup event. Sci Rep. 2014;4:6724. DOI: 10.1038/srep06724. PMC: PMC5381370.
12.Glikson AY. The sedimentary record of extraterrestrial impacts in deep-shelf environments: Evidence from the early Precambrian. J Geol. 2001;109(1):1-19. DOI: 10.1086/314488.
13.French BM, Koeberl C. The convincing identification of terrestrial meteorite impact structures. Earth-Sci Rev. 2010;98(1-2):123-170. DOI: 10.1016/j.earscirev.2009.10.009.
14.Carpinteri A, et al. Piezonuclear fission reactions from earthquakes and brittle rocks failure. Exp Mech. 2013;53(3):345-365. DOI: 10.1007/s11340-012-9629-x.
15.Bahari A, et al. Simulation with Monte Carlo methods to find relationships between mechanical energy and radiation in piezoelectric rocks. Radiat Eff Defects Solids. 2022;177(5-6):522-536. DOI: 10.1080/10420150.2022.2073885.
16.Cardone F, et al. Piezonuclear neutrons from iron. J Condens Matter Nucl Sci. 2012;8:1-13.
17.Carpinteri A, Manuello A. Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earth’s Crust. Strain. 2011;47:267-281. DOI: 10.1111/j.1475-1305.2010.00766.x.
18.Volodichev NN, et al. High-energy neutron emission during seismic activity. Radiat Meas. 2000;32(2):157-160. DOI: 10.1016/S1350-4487(99)00270-2.
19.Vardiman L, et al. Radioisotopes and the Age of the Earth. ICR; 2005.
20.Humphreys DR, et al. Helium diffusion rates support accelerated nuclear decay. Proc Fifth Int Conf Creationism. 2003;175-195.
21.Snelling AA. Radiohalos in granites: Evidence for accelerated nuclear decay. RATE II. 2005;101-190.
22.Baumgardner JR. 14C evidence for a recent global flood and a young earth. RATE II. 2005;587-630.
23.Fischbach E, et al. Time-dependent nuclear decay parameters: New evidence for new forces? Space Sci Rev. 2009;145(3-4):285-335. DOI: 10.1007/s11214-009-9518-5.
24.Jenkins JH, et al. Evidence of correlations between nuclear decay rates and Earth–Sun distance. Astropart Phys. 2009;32(1):42-46. DOI: 10.1016/j.astropartphys.2009.05.004.
25.Slusher HS. Critique of Radiometric Dating. ICR; 1981.
26.Courty MA, et al. The 4kyr BP impact event: Evidence and cycle. Proc 33rd Int Geol Congr. 2008.
27.Firestone RB, et al. Evidence for an extraterrestrial impact 12,900 years ago. PNAS. 2007;104(41):16016-21. DOI: 10.1073/pnas.0706977104. PMC: PMC1994902.
28.Kennett JP, et al. Bayesian chronological analyses consistent with synchronous age of 12,800-year-old YDB impact layer. PNAS. 2015;112(32):E4344-53. DOI: 10.1073/pnas.1503024112. PMC: PMC4538631.
29.Bunch TE, et al. Very high-temperature impact melt products as evidence for cosmic airbursts 12,900 years ago. PNAS. 2012;109(28):E1903-12. DOI: 10.1073/pnas.1201644109. PMC: PMC3396511.
30.Wittke JH, et al. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. PNAS. 2013;110(23):E2088-97. DOI: 10.1073/pnas.1301760110. PMC: PMC3677428.
31.Wolbach WS, et al. Extraordinary biomass-burning episode fueled by the Younger Dryas cosmic impact. J Geol. 2018;126(2):165-184. DOI: 10.1086/695703.
32.Schweitzer MH, et al. A role for iron and oxygen chemistry in preserving soft tissues. Proc R Soc B. 2013;281(1775):20132741. DOI: 10.1098/rspb.2013.2741. PMC: PMC3866414.
33.Armitage MH, Anderson KL. Soft sheets of fibrillar bone from a fossil of Triceratops horridus. Acta Histochem. 2013;115(6):603-8. DOI: 10.1016/j.acthis.2013.01.001. PMID: 23414643.
34.Boatman EM, et al. Mechanisms of soft tissue and protein preservation in Tyrannosaurus rex. Sci Rep. 2019;9:15678. DOI: 10.1038/s41598-019-51680-1. PMC: PMC6821815.
35.Schroeter ER, et al. Expansion for the Brachylophosaurus canadensis collagen sequence. J Proteome Res. 2017;16(2):920-32. DOI: 10.1021/acs.jproteome.6b00873. PMC: PMC5310630.
36.Goderis S, et al. Globally distributed iridium layer preserved within the Chicxulub impact structure. Sci Adv. 2021;7(9):eabe3647. DOI: 10.1126/sciadv.abe3647. PMC: PMC7904271.
37.Schmieder M, Kring DA. Earth’s impact events through geologic time. Astrobiology. 2020;20(1):91-141. DOI: 10.1089/ast.2019.2085. PMC: PMC6987741.
38.Vajda V, et al. Nanoparticles of iridium identified in Chicxulub asteroid impact spherules. Glob Planet Change. 2025;244:104618. DOI: 10.1016/j.gloplacha.2024.104618.
39.Glikson AY, Allen C. Iridium anomalies in impact ejecta, Brockman Iron Formation. Earth Planet Sci Lett. 2004;220(3-4):247-64. DOI: 10.1016/S0012-821X(04)00062-7.
40.Koeberl C. The geochemistry and cosmochemistry of impacts. Treatise on Geochemistry. 2014;73-118. DOI: 10.1016/B978-0-08-095975-7.00124-3.
41.French BM. Traces of Catastrophe. LPI Contribution No. 954; 1998.
42.Melosh HJ. Impact Cratering: A Geologic Process. Oxford Univ Press; 1989.
43.Cardone F, et al. TeraHertz Vibrations and Phono-Fission Reactions from Crushing of Iron-rich Natural Rocks. Exp Mech. 2025.
44.Carpinteri A, et al. Piezonuclear neutrons from earthquakes and carbon-14 dating anomalies. Sci Res Essays. 2012;7(22):2005-12. DOI: 10.5897/SRE11.676.
45.Nabil IM, et al. Effective of prompt and delayed gamma emission on neutron attenuation. Appl Radiat Isot. 2025;214:111520. DOI: 10.1016/j.apradiso.2024.111520.
46.Pakari O, et al. Gamma noise to monitor nuclear research reactors. Sci Rep. 2024;14:8245. DOI: 10.1038/s41598-024-58673-x. PMC: PMC11006879.
47.Bulgac A, et al. Pre-equilibrium neutron emission in fission or fragmentation. Phys Rev C. 2020;102:034612. DOI: 10.1103/PhysRevC.102.034612.
48.Bahari A, et al. Simulation of mechanical energy and radiation in piezoelectric rocks. Radiat Eff Defects Solids. 2022;177:522-36. DOI: 10.1080/10420150.2022.2073885.
49.Kamo SL, et al. A 2.023 Ga age for the Vredefort impact event. Earth Planet Sci Lett. 1996;144:369-87. DOI: 10.1016/S0012-821X(96)00180-X.
50.Moser DE. Dating the Vredefort impact. Geology. 1997;25(1):7-10. DOI: 10.1130/0091-7613(1997)025<0007:DTVI>2.3.CO;2.
51.Sleep NH. Asteroid bombardment and the core of Theia. Geochem Geophys Geosyst. 2016;17(1):163-74. DOI: 10.1002/2015GC006085. PMC: PMC8793101.
52.Hopp T, et al. The Moon-forming impactor Theia originated from the inner Solar System. Nature. 2024;631:510-515. DOI: 10.1038/s41586-024-07613-x.
53.Kirkland CL, et al. Precise radiometric age establishes Yarrabubba as Earth’s oldest known impact structure. Nat Commun. 2020;11:331. DOI: 10.1038/s41467-019-13985-7. PMC: PMC6974607.
54.Glikson AY. From Stars to Brains. Springer; 2019. DOI: 10.1007/978-3-030-10603-4.
55.Korenaga J. Crustal evolution and mantle dynamics through Earth history. Phil Trans R Soc A. 2018;376:20170408. DOI: 10.1098/rsta.2017.0408. PMC: PMC6189559.
56.Cardone F, Mignani R. Deformed Spacetime. Springer; 2007.
57.Lindstrom KJ, et al. Accelerated nuclear decay: A review of the evidence. J Creation. 2021;35(1):101-108.
58.Austin SA. Radioisotopes and the Age of the Earth. ICR; 2000.
59.Chaffin EF. A theoretical approach to accelerated nuclear decay. RATE I. 2000;303-334.
60.Snelling AA. Geochemical processes in the light of accelerated nuclear decay. RATE I. 2000;1-100.
61.Gentry RV. Creation’s Tiny Mystery. Earth Science Associates; 1986.
62.Cook MA. Prehistory and Earth Models. Max Parrish & Co; 1966.
63.Woodmorappe J. The Mythology of Modern Dating Methods. ICR; 1999.
64.Morris JD. The Young Earth. Master Books; 2007.
65.Brown W. In the Beginning. Center for Scientific Creation; 2008.
66.Glikson AY, Pirajno F. Asteroids Impacts, Crustal Evolution and Related Mineral Systems. Springer; 2018. DOI: 10.1007/978-3-319-74545-9.
67.Bottke WF, et al. An asteroid breakup 160 My ago as source of the K/T impactor. Nature. 2007;449:48-53. DOI: 10.1038/nature06070.
68.Nesvorný D, et al. The recent breakup of an asteroid in the main-belt region. Nature. 2002;417:720-2. DOI: 10.1038/nature00789.
69.Culler TS, et al. Lunar impact history from 40Ar/39Ar dating of glass spherules. Science. 2000;287:1785-8. DOI: 10.1126/science.287.5459.1785.
70.Koeberl C, Anderson RR. The Manson Impact Structure, Iowa. GSA Special Paper 302; 1996. DOI: 10.1130/SPE302.
Banco de Dados de Referências Científicas: Tese de Fragmentação de Asteroides e NEOs
Autor da Tese: Sodré GB Neto
Objetivo: Fundamentar a origem de NEOs via fragmentação recente e seus efeitos geocronológicos e biológicos.
1. Origem e Dinâmica de NEOs e Fragmentação de Asteroides
1.Zolotarev, R. V., & Shustov, B. M. (2023). Evolution of meteoroid streams originating from NEA collisions. Astronomy Reports, 67(10), 987-995. DOI: 10.1134/S1063772923100098.
2.Zhang, Y., et al. (2020). Collisional formation of top-shaped asteroids and implications for their origins. Nature Communications, 11, 2655. DOI: 10.1038/s41467-020-16474-0. PMID: 32461566. PMC: PMC7253434.
3.Raducan, S. D., et al. (2024). Evidence for multi-fragmentation and mass shedding of boulders on asteroid Dimorphos. Nature Communications, 15, 6342. DOI: 10.1038/s41467-024-50634-y. PMC: PMC11289111.
4.Walsh, K. J., et al. (2011). A low-density rubble-pile origin for the top-shaped asteroid (101955) Bennu. Nature, 475, 206-209. DOI: 10.1038/nature10167.
5.Bottke, W. F., et al. (2002). The central role of the Yarkovsky effect in the evolution of the Solar System. Annual Review of Earth and Planetary Sciences, 30, 387-434. DOI: 10.1146/annurev.earth.30.091201.141203.
6.Morbidelli, A., et al. (2002). Origin and Evolution of Near-Earth Objects. Asteroids III, 409-422. DOI: 10.2307/j.ctv1v7zd54.34.
7.Michel, P., et al. (2001). Collisional disruption of asteroids and formation of family members. Science, 294(5547), 1696-1700. DOI: 10.1126/science.1065189. PMID: 11721049.
2. Evidências de Impactos em Camadas Sedimentares e Pré-Cambrianas
1.Glass, B. P., & Simonson, B. M. (2013). Distal Impact Ejecta Layers: A Record of Large Impacts in Sedimentary Deposits. Springer. DOI: 10.1007/978-3-540-48183-6.
2.Reimold, W. U., & Koeberl, C. (2014). Precambrian impact structures and ejecta on Earth: A review. Journal of African Earth Sciences, 93, 57-175. DOI: 10.1016/j.jafrearsci.2014.01.008.
3.Simonson, B. M., et al. (2019). Geochemistry of a confirmed Precambrian impact ejecta deposit: The Grænsesø spherule layer, South Greenland. Meteoritics & Planetary Science, 54(10), 2269-2302. DOI: 10.1111/maps.13271.
4.Ormö, J., et al. (2014). First known terrestrial impact of a binary asteroid from a main belt breakup event. Scientific Reports, 4, 6724. DOI: 10.1038/srep06724. PMID: 25338515. PMC: PMC5381370.
5.Glikson, A. Y. (2001). The sedimentary record of extraterrestrial impacts in deep-shelf environments: Evidence from the early Precambrian. The Journal of Geology, 109(1), 1-19. DOI: 10.1086/314488.
6.French, B. M., & Koeberl, C. (2010). The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Science Reviews, 98(1-2), 123-170. DOI: 10.1016/j.earscirev.2009.10.009.
3. Efeitos Radioativos e Piezoeletricidade Nuclear de Impactos
1.Carpinteri, A., et al. (2013). Piezonuclear fission reactions from earthquakes and brittle rocks failure: Evidence of neutron emission and non-radioactive product elements. Experimental Mechanics, 53(3), 345-365. DOI: 10.1007/s11340-012-9629-x.
2.Bahari, A., et al. (2022). Simulation with Monte Carlo methods to find relationships between accumulated mechanical energy and atomic/nuclear radiation in piezoelectric rocks. Radiation Effects and Defects in Solids, 177(5-6), 522-536. DOI: 10.1080/10420150.2022.2073885.
3.Cardone, F., et al. (2012). Piezonuclear neutrons from iron. Journal of Condensed Matter Nuclear Science, 8, 1-13. Link.
4.Carpinteri, A., & Manuello, A. (2011). Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earth’s Crust. Strain, 47, 267-281. DOI: 10.1111/j.1475-1305.2010.00766.x.
5.Volodichev, N. N., et al. (2000). High-energy neutron emission during seismic activity. Radiation Measurements, 32(2), 157-160. DOI: [10.1016/S1350-4487(99)00270-2](https://doi.org/10.1016/S1350-4487(99 )00270-2).
4. Crítica ao Uniformitarismo e Aceleração de Decaimento (Contexto RATE e Impactos)
1.Vardiman, L., Snelling, A. A., & Chaffin, E. F. (2005). Radioisotopes and the Age of the Earth: Results of a Young-Earth Creationist Research Initiative. Institute for Creation Research. Link.
2.Humphreys, D. R., et al. (2003). Helium diffusion rates support accelerated nuclear decay. Proceedings of the Fifth International Conference on Creationism, 175-195. Link.
3.Snelling, A. A. (2005). Radiohalos in granites: Evidence for accelerated nuclear decay. Radioisotopes and the Age of the Earth: Results of a Young-Earth Creationist Research Initiative, 101-190.
4.Baumgardner, J. R. (2005). 14C evidence for a recent global flood and a young earth. Radioisotopes and the Age of the Earth: Results of a Young-Earth Creationist Research Initiative, 587-630.
5.Fischbach, E., et al. (2009). Time-dependent nuclear decay parameters: New evidence for new forces? Space Science Reviews, 145(3-4), 285-335. DOI: 10.1007/s11214-009-9518-5.
6.Jenkins, J. H., et al. (2009). Evidence of correlations between nuclear decay rates and Earth–Sun distance. Astroparticle Physics, 32(1), 42-46. DOI: 10.1016/j.astropartphys.2009.05.004.
7.Slusher, H. S. (1981). Critique of Radiometric Dating. Institute for Creation Research. Technical Monograph No. 2.
5. Impactos no Holoceno e Mudanças Biológicas/Geológicas Recentes
1.Courty, M. A., et al. (2008). The 4kyr BP impact event: Evidence and cycle. Proceedings of the 33rd International Geological Congress. Link.
2.Firestone, R. B., et al. (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences, 104(41), 16016-16021. DOI: 10.1073/pnas.0706977104. PMID: 17901202. PMC: PMC1994902.
3.Kennett, J. P., et al. (2015). Bayesian chronological analyses consistent with synchronous age of 12,800-year-old Younger Dryas boundary (YDB) impact layer. Proceedings of the National Academy of Sciences, 112(32), E4344-E4353. DOI: 10.1073/pnas.1503024112. PMID: 26216952. PMC: PMC4538631.
4.Bunch, T. E., et al. (2012). Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proceedings of the National Academy of Sciences, 109(28), E1903-E1912. DOI: 10.1073/pnas.1201644109. PMID: 22689977. PMC: PMC3396511.
5.Wittke, J. H., et al. (2013). Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proceedings of the National Academy of Sciences, 110(23), E2088-E2097. DOI: 10.1073/pnas.1301760110. PMID: 23690586. PMC: PMC3677428.
6.Wolbach, W. S., et al. (2018). Extraordinary biomass-burning episode and impact winter fueled by the Younger Dryas cosmic impact ~12,800 years ago. The Journal of Geology, 126(2), 165-184. DOI: 10.1086/695703.
6. Preservação de Tecidos Moles e Taphonomia de Impacto
1.Schweitzer, M. H., et al. (2013). A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proceedings of the Royal Society B: Biological Sciences, 281(1775), 20132741. DOI: 10.1098/rspb.2013.2741. PMID: 24285202. PMC: PMC3866414.
2.Armitage, M. H., & Anderson, K. L. (2013). Soft sheets of fibrillar bone from a fossil of the supraorbital horn of the dinosaur Triceratops horridus. Acta Histochemica, 115(6), 603-608. DOI: 10.1016/j.acthis.2013.01.001. PMID: 23414643.
3.Boatman, E. M., et al. (2019). Mechanisms of soft tissue and protein preservation in Tyrannosaurus rex. Scientific Reports, 9, 15678. DOI: 10.1038/s41598-019-51680-1. PMID: 31666542. PMC: PMC6821815.
4.Schroeter, E. R., et al. (2017). Expansion for the Brachylophosaurus canadensis collagen sequence and additional evidence of the preservation of dinosaur proteins. Journal of Proteome Research, 16(2), 920-932. DOI: 10.1021/acs.jproteome.6b00873. PMID: 28114787. PMC: PMC5310630.
7. Impactologia, Cratering e Camadas de Ejetos
1.Goderis, S., et al. (2021). Globally distributed iridium layer preserved within the Chicxulub impact structure. Science Advances, 7(9), eabe3647. DOI: 10.1126/sciadv.abe3647. PMID: 33627419. PMC: PMC7904271.
2.Schmieder, M., & Kring, D. A. (2020). Earth’s impact events through geologic time: A list of recommended ages for terrestrial impact structures and deposits. Astrobiology, 20(1), 91-141. DOI: 10.1089/ast.2019.2085. PMID: 31592686. PMC: PMC6987741.
3.Vajda, V., et al. (2025). Nanoparticles of iridium and other platinum group elements identified in Chicxulub asteroid impact spherules. Global and Planetary Change, 244, 104618. DOI: 10.1016/j.gloplacha.2024.104618.
4.Glikson, A. Y., & Allen, C. (2004). Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Western Australia. Earth and Planetary Science Letters, 220(3-4), 247-264. DOI: [10.1016/S0012-821X(04)00062-7](https://doi.org/10.1016/S0012-821X(04 )00062-7).
5.Koeberl, C. (2014). The geochemistry and cosmochemistry of impacts. Treatise on Geochemistry, 2nd Edition, 73-118. DOI: 10.1016/B978-0-08-095975-7.00124-3.
6.French, B. M. (1998). Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954. Link.
7.Melosh, H. J. (1989). Impact Cratering: A Geologic Process. Oxford University Press.
8. Fono-fissão e Emissão de Nêutrons em Minerais (Mecanismos Adicionais)
1.Cardone, F., et al. (2025). TeraHertz Vibrations and Phono-Fission Reactions from Crushing of Iron-rich Natural Rocks. Experimental Mechanics (Preprint). Link.
2.Carpinteri, A., et al. (2012). Piezonuclear neutrons from earthquakes as a hypothesis for the explanation of carbon-14 dating anomalies. Scientific Research and Essays, 7(22), 2005-2012. DOI: 10.5897/SRE11.676.
3.Nabil, I. M., et al. (2025). Effective of prompt and delayed gamma emission on neutron attenuation capabilities of natural minerals. Applied Radiation and Isotopes, 214, 111520. DOI: 10.1016/j.apradiso.2024.111520.
4.Pakari, O., et al. (2024). Gamma noise to non-invasively monitor nuclear research reactors. Scientific Reports, 14, 8245. DOI: 10.1038/s41598-024-58673-x. PMID: 38594312. PMC: PMC11006879.
5.Bulgac, A., et al. (2020). Pre-equilibrium neutron emission in fission or fragmentation. Physical Review C, 102, 034612. DOI: 10.1103/PhysRevC.102.034612.
6.Bahari, A., et al. (2022). Simulation with Monte Carlo methods to find relationships between accumulated mechanical energy and atomic/nuclear radiation in piezoelectric rocks. Radiation Effects and Defects in Solids, 177, 522-536. DOI: 10.1080/10420150.2022.2073885.
9. Estruturas de Impacto Globais (Vredefort, Theia) e Anomalias de Datação
1.Kamo, S. L., et al. (1996). A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth and Planetary Science Letters, 144(3-4), 369-387. DOI: [10.1016/S0012-821X(96)00180-X](https://doi.org/10.1016/S0012-821X(96 )00180-X).
2.Moser, D. E. (1997). Dating the Vredefort impact: Protracted magmatism or rapid crystallization? Geology, 25(1), 7-10. DOI: [10.1130/0091-7613(1997)025<0007:DTVI>2.3.CO;2](https://doi.org/10.1130/0091-7613(1997 )025<0007:DTVI>2.3.CO;2).
3.Sleep, N. H. (2016). Asteroid bombardment and the core of Theia as possible sources for the Moon’s highly siderophile elements. Geochemistry, Geophysics, Geosystems, 17(1), 163-174. DOI: 10.1002/2015GC006085. PMC: PMC8793101.
4.Hopp, T., et al. (2025). The Moon-forming impactor Theia originated from the inner Solar System. Nature, 631, 510-515. DOI: 10.1038/s41586-024-07613-x. PMID: 41264717.
5.Kirkland, C. L., et al. (2020). Precise radiometric age establishes Yarrabubba, Western Australia, as Earth’s oldest known impact structure. Nature Communications, 11, 331. DOI: 10.1038/s41467-019-13985-7. PMID: 31964860. PMC: PMC6974607.
6.Glikson, A. Y. (2019). From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence. Springer. DOI: 10.1007/978-3-030-10603-4.
7.Korenaga, J. (2018). Crustal evolution and mantle dynamics through Earth history. Philosophical Transactions of the Royal Society A, 376(2132), 20170408. DOI: 10.1098/rsta.2017.0408. PMID: 30249603. PMC: PMC6189559.
10. Estudos Adicionais sobre Radioatividade e Geocronologia Crítica
1.Cardone, F., & Mignani, R. (2007). Deformed Spacetime: Geometrizing Interactions in Four and Five Dimensions. Springer. (Discute fundamentos teóricos de reações piezonucleares).
2.Lindstrom, K. J., et al. (2021). Accelerated nuclear decay: A review of the evidence. Journal of Creation, 35(1), 101-108.
3.Austin, S. A. (2000). Radioisotopes and the Age of the Earth. ICR Technical Monograph.
4.Chaffin, E. F. (2000). A theoretical approach to accelerated nuclear decay. Radioisotopes and the Age of the Earth, 303-334.
5.Snelling, A. A. (2000). Geochemical processes in the light of accelerated nuclear decay. Radioisotopes and the Age of the Earth, 1-100.
6.Gentry, R. V. (1986). Creation’s Tiny Mystery. Earth Science Associates. (Discute radio-halos e datação).
7.Cook, M. A. (1966). Prehistory and Earth Models. Max Parrish & Co. (Crítica pioneira à geocronologia radiométrica).
8.Woodmorappe, J. (1999). The Mythology of Modern Dating Methods. Institute for Creation Research.
9.Morris, J. D. (2007). The Young Earth. Master Books.
10.Brown, W. (2008). In the Beginning: Compelling Evidence for Creation and the Flood. Center for Scientific Creation. Link.
11.Glikson, A. Y., & Pirajno, F. (2018). Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia. Springer. DOI: 10.1007/978-3-319-74545-9.
12.Bottke, W. F., et al. (2007). An asteroid breakup 160 My ago as the probable source of the K/T impactor. Nature, 449, 48-53. DOI: 10.1038/nature06070. PMID: 17805288.
13.Nesvorný, D., et al. (2002). The recent breakup of an asteroid in the main-belt region. Nature, 417, 720-722. DOI: 10.1038/nature00789. PMID: 12066178.
14.Culler, T. S., et al. (2000). Lunar impact history from 40Ar/39Ar dating of glass spherules. Science, 287(5459), 1785-1788. DOI: 10.1126/science.287.5459.1785. PMID: 10710299.
15.Koeberl, C., & Anderson, R. R. (1996). The Manson Impact Structure, Iowa: Anatomy of an Impact Crater. Geological Society of America Special Paper 302. DOI: 10.1130/SPE302.
16.Sodré GB Neto. Resolvendo o Enigma da Origem dos NEOs e sua Relação com uma Possível Chuva de Asteroides Maiores nas Rochas Pré-Cambrianas e Durante a Formação das Rochas Sedimentares. Jornal da Ciência, 2026. Link.