1. Fu, W., O’Connor, T. D., Jun, G., Kang, H. M., Abecasis, G., Leal, S. M., Gabriel, S., Rieder, M. J., Altshuler, D. (2013). Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature, 493(7431), 216-220.
2. Fu, W., O’Connor, T. D., & Akey, J. M. (2013). Genetic architecture of quantitative traits and complex diseases. Current Opinion in Genetics & Development, 23(6), 678-683.
3. Keinan, A., & Clark, A. G. (2012). Recent explosive human population growth has resulted in an excess of rare genetic variants. Science, 336(6082), 740-743.
4. Tennessen, J. A., Bigham, A. W., O’Connor, T. D., Fu, W., Kenny, E. E., Kondlo, S., ... & Akey, J. M. (2012). Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science, 337(6090), 64-69.
5. Nelson, M. R., Wegmann, D., Sharapov, M. G., Marsh, J. D., Schultz, J. S., Chissoe, S. L., ... & Abecasis, G. R. (2012). An abundance of rare functional genetic variation in 202 genes. Science, 337(6090), 100-104.
6. Coventry, A., Bull-Otterson, L. M., Case, J. P., Gunderson, R., Nguyen, J., Harris, J., ... & Li, B. (2010). Deep resequencing reveals a preponderance of rare variants. Science, 329(5993), 822-825.
7. Marth, G. T., Yu, F., Indap, A. R., Garimella, K., Gravel, S., Leong, W. F., ... & 1000 Genomes Project. (2011). The functional spectrum of low-frequency coding variation. Genome Biology, 12(9), R84.
8. Gravel, S., Henn, B. M., Gutenkunst, R. N., Indap, A. R., Marth, G. T., Clark, A. G., ... & 1000 Genomes Project. (2011). Demographic history and rare allele sharing among human populations. Proceedings of the National Academy of Sciences, 108(29), 11983-11988.
9. Kiezun, A., Garimella, K., Do, R., Stitziel, N. O., Neale, B. M., McLaren, P. J., ... & Sunyaev, S. R. (2012). Exome sequencing and the genetic basis of complex traits. Nature Genetics, 44(6), 623-630.
10. Gazave, E., Chang, D., Clark, A. G., & Keinan, A. (2014). High burden of private mutations due to explosive human population growth and purifying selection. BMC Genomics, 15(4), S3.
11. 1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526(7571), 68-74.
12. O’Connor, T. D., Fu, W., Meyer, V. E., Huang, A. Y., Cottrell, C., Scheck, A., ... & Akey, J. M. (2015). Rare variation facilitates inferences of fine-scale population structure in humans. Molecular Biology and Evolution, 32(6), 1560-1572.
13. Harris, K., & Pritchard, J. K. (2017). Rapid evolution of the human mutation spectrum. eLife, 6, e24284.
14. Mathieson, I., & McVean, G. (2014). Demography and the age of rare variants. PLoS Genetics, 10(8), e1004528.
15. Lohmueller, K. E. (2014). The distribution of deleterious genetic variation in human populations. Current Opinion in Genetics & Development, 29, 139-146.
16. Kim, K., Lee, J. H., & Kim, C. G. (2012). A large-scale analysis of human-specific insertions and deletions. Genome Research, 22(6), 1035-1041.
17. Do, R., Balick, D., Li, H., Adzhubey, I., Sunyaev, S., & Reich, D. (2015). No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nature Genetics, 47(2), 126-131.
18. Simons, Y. B., Turchin, M. C., Pritchard, J. K., & Sella, G. (2014). The deleterious mutation load is similar in diverse human populations. PLoS Genetics, 10(5), e1004372.
19. Henn, B. M., Botigué, L. R., Peischl, S., Dupanloup, I., Lipatov, M., Chiaroni, J., ... & Bustamante, C. D. (2016). Distance from Africa, not recent whole-genome duplication, shapes the distribution of deleterious mutations in humans. Proceedings of the National Academy of Sciences, 113(4), E440-E449.
20. Mallick, S., Li, H., Lipson, M., Mathieson, I., Cassell, M., Berger, B., ... & Reich, D. (2016). The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature, 538(7624), 201-206.
21. Quintana-Murci, L. (2016). Understanding rare and common diseases in the context of human evolution. Genome Biology, 17(1), 225.
22. Gao, F., & Keinan, A. (2016). Explosive genetic evidence for explosive human population growth. Current Opinion in Genetics & Development, 41, 130-139.
23. Harris, K. (2015). Evidence for recent, population-specific evolution of the human mutation rate. Proceedings of the National Academy of Sciences, 112(11), 3439-3444.
24. Kryukov, G. V., Pennacchio, L. A., & Sunyaev, S. R. (2007). Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. The American Journal of Human Genetics, 80(4), 727-739.
25. Boyko, A. R., Quane, A. R., Boyko, A. R., Indap, A. R., Gutenkunst, R. N., Hernandez, R. D., ... & Bustamante, C. D. (2008). Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genetics, 4(5), e1000083.
26. Turchin, M. C., Chiang, C. W., Palmer, C. D., Sankararaman, S., Reich, D., & Hirschhorn, J. N. (2012). Evidence of widespread selection on standing variation in Europe at height-associated loci. Nature Genetics, 44(9), 1015-1019.
27. Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S. A., ... & Reich, D. (2015). Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 528(7583), 499-503.
28. Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., ... & Exome Aggregation Consortium. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616), 285-291.
29. Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., ... & Genome Aggregation Database Consortium. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434-443.
30. Taliun, D., Harris, D. N., Kessler, M. D., Carlson, J., Szpiech, Z. A., Torres, R., ... & TOPMed Consortium. (2021). Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature, 590(7845), 290-299.
31. Speidel, L., Forest, M., Shi, S., & Myers, S. R. (2019). A method for genome-wide genealogy estimation for thousands of samples. Nature Genetics, 51(9), 1321-1329.
32. Wohns, A. W., Wong, Y., Anthony, N. M., Akbari, A., Reshef, Y. G., Albers, C. A., ... & McVean, G. (2022). A unified genealogy of modern and ancient genomes. Science, 375(6583), eabi4401.
33. Palamara, P. F., Lencz, T., Darvasi, A., & Pe’er, I. (2012). Length distributions of identity by descent reveal recent deterministic segments of ancestry. The American Journal of Human Genetics, 91(3), 457-471.
34. Browning, S. R., & Browning, B. L. (2015). Accurate non-parametric estimation of recent effective population size from segments of identity by descent. The American Journal of Human Genetics, 97(3), 404-418.
35. Ralph, P., & Coop, G. (2013). The geography of recent genetic ancestry across Europe. PLoS Biology, 11(5), e1001555.
36. Schiffels, S., & Durbin, R. (2014). Inferring human population size and separation history from multiple genome sequences. Nature Genetics, 46(8), 919-925.
37. Li, H., & Durbin, R. (2011). Inference of human population history from individual whole-genome sequences. Nature, 475(7357), 493-496.
38. Malaspinas, A. S., Westaway, M. C., Muller, C., Sousa, V. C., Lao, O., Alves, I., ... & Willerslev, E. (2016). A genomic history of Aboriginal Australia. Nature, 538(7624), 207-214.
39. Pagani, L., Lawson, D. J., Jagoda, E., Mörseburg, A., Eriksson, A., Mitt, M., ... & Metspalu, M. (2016). Genomic analyses inform on genomes of modern humans in Southeast Asia and Oceania. Nature, 538(7624), 238-242.
40. Nielsen, R., Akey, J. M., Jakobsson, M., Pritchard, J. K., Tishkoff, S., & Willerslev, E. (2017). Tracing the history of modern humans using 1000 genomes. Nature, 541(7637), 302-310.
41. Fan, S., Hansen, M. E., Lo, Y., & Tishkoff, S. A. (2016). Going global by adapting local: A review of recent human adaptation. Science, 354(6308), 54-59.
42. Karlsson, E. K., Kwiatkowski, D. P., & Sabeti, P. C. (2014). Natural selection and infectious disease in human populations. Nature Reviews Genetics, 15(6), 379-393.
43. Key, F. M., Fu, Q., Slatkin, M., & Pääbo, S. (2016). Advantageous variants in the human genome that derived from Neandertals. Current Opinion in Genetics & Development, 41, 35-40.
44. Sankararaman, S., Mallick, S., Dannemann, M., Prüfer, K., Kelso, J., Pääbo, S., ... & Reich, D. (2014). The genomic landscape of Neanderthal ancestry in contemporary humans. Nature, 507(7492), 354-357.
45. Vernot, B., & Akey, J. M. (2014). Resurrecting surviving Neandertal lineages from modern human genomes. Science, 343(6174), 1017-1021.
46. Hu, H., Huff, C. D., Rogers, A., & Jorde, L. B. (2013). Estimating the age of rare variants in the human genome. PLoS One, 8(11), e80187.
47. Albrechtsen, A., Moltke, I., & Nielsen, R. (2010). Natural selection and the distribution of deleterious mutations in populations with explosive growth. Genetics, 186(4), 1353-1363.
48. Zhu, Q., & Bustamante, C. D. (2015). A survey of human genetic variation and its impact on disease. Annual Review of Genomics and Human Genetics, 16, 125-146.
49. Gravel, S. (2016). When is selection effective? Genetics, 203(1), 451-462.
50. Brandler, W. M., & Lapuente, G. (2016). The role of rare variants in complex diseases. Nature Reviews Genetics, 17, 345-358.
51. Zuk, O., Hechter, E., Sunyaev, S. R., & Lander, E. S. (2012). The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences, 109(4), 1193-1198.
52. Gibson, G. (2012). Rare and common variants: twenty arguments. Nature Reviews Genetics, 13(2), 135-145.
53. Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., ... & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747-753.
54. Eyre-Walker, A., & Keightley, P. D. (2007). The distribution of fitness effects of new mutations. Nature Reviews Genetics, 8(8), 610-618.
55. Kim, Y., & Galtier, N. (2014). Selective sweeps and the age of rare variants. Molecular Biology and Evolution, 31(11), 2901-2910.
56. Cochran, G., & Harpending, H. (2009). The 10,000 Year Explosion: How Civilization Accelerated Human Evolution. Basic Books.
57. Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C., & Moyzis, R. K. (2007). Recent acceleration of human adaptive evolution. Proceedings of the National Academy of Sciences, 104(52), 20753-20758.
58. Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A map of recent positive selection in the human genome. PLoS Biology, 4(3), e72.
59. Wang, E. T., Kodama, G., Baldi, P., & Moyzis, R. K. (2006). Global landscape of recent inferred selection in the human genome. Proceedings of the National Academy of Sciences, 103(1), 135-140.
60. Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., ... & International HapMap Consortium. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164), 913-918.
61. Pickrell, J. K., Coop, G., Novembre, J., Kudaravalli, S., Li, J. Z., Absher, D., ... & Pritchard, J. K. (2009). Signals of recent positive selection in a worldwide sample of human populations. Genome Research, 19(5), 826-837.
62. Novembre, J., & Di Rienzo, A. (2009). Spatial patterns of variation due to natural selection in humans. Nature Reviews Genetics, 10(11), 745-755.
63. Pritchard, J. K., Pickrell, J. K., & Coop, G. (2010). The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Current Biology, 20(4), R208-R215.
64. Hernandez, R. D., Kelley, J. L., Elyashiv, E., Dutton, R. J., Guy, W. T., Reeve, J. P., ... & Coop, G. (2011). Classic selective sweeps were rare in recent human evolution. Science, 331(6019), 920-924.
65. Enard, D., Messer, P. W., & Petrov, D. A. (2014). Genome-wide signals of positive selection in human evolution. Genome Research, 24(6), 885-895.
66. Fu, Q., Hajdinjak, M., Moldovan, O. T., Constantin, S., Mallick, S., Skoglund, P., ... & Pääbo, S. (2015). An early modern human from Romania with a recent Neanderthal ancestor. Nature, 524(7564), 216-219.
67. Lazaridis, I., Patterson, N., Mittnik, A., Renaud, G., Mallick, S., Kirsanow, K., ... & Krause, J. (2014). Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 513(7518), 409-413.
68. Haak, W., Lazaridis, I., Patterson, N., Rohland, N., Mallick, S., Llamas, B., ... & Reich, D. (2015). Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 522(7555), 207-211.
69. Allentoft, M. E., Sikora, M., Sjögren, K. G., Rasmussen, S., Rasmussen, M., Stenderup, J., ... & Willerslev, E. (2015). Population genomics of Bronze Age Eurasia. Nature, 522(7555), 167-172.
70. Olalde, I., Brace, S., Allentoft, M. E., Armit, I., Kristiansen, K., Booth, T., ... & Reich, D. (2018). The Beaker phenomenon and the genomic transformation of northwest Europe. Nature, 555(7695), 190-196.
71. Posth, C., Nägele, K., Colleran, H., Valentin, F., Bedford, S., Gray, R. D., ... & Krause, J. (2018). Language continuity despite population replacement in Remote Oceania. Nature Ecology & Evolution, 2(4), 731-740.
72. Skoglund, P., Malmström, H., Omrak, A., Raghavan, M., Valdiosera, C., Günther, T., ... & Jakobsson, M. (2014). Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science, 344(6185), 747-750.
73. Lipson, M., Szécsényi-Nagy, A., Mallick, S., Pósa, A., Stégmár, B., Keerl, V., ... & Reich, D. (2017). Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature, 551(7680), 368-372.
74. Cassidy, L. M., Martiniano, R., Murphy, E. M., Teasdale, M. D., Mallory, J., Hartwell, B., & Bradley, D. G. (2016). Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proceedings of the National Academy of Sciences, 113(2), 368-373.
75. Broushaki, F., Kopp, W., Viviano, R., Scheu, A., Selelak, J., Kirsanow, K., ... & Burger, J. (2016). Early Neolithic genomes from the eastern Fertile Crescent. Science, 353(6298), 499-503.
76. Jones, E. R., Gonzalez-Fortes, G., Connell, S., Siska, V., Eriksson, A., Martiniano, R., ... & Bradley, D. G. (2015). Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nature Communications, 6, 8912.
77. Gallego Llorente, M., Jones, E. R., Eriksson, A., Siska, V., Arthur, K. W., Arthur, J. W., ... & Manica, A. (2015). Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science, 350(6262), 820-822.
78. Skoglund, P., Thompson, J. C., Prendergast, M. E., Wenenne, A., Sirak, K., Hajdinjak, M., ... & Reich, D. (2017). Reconstructing prehistoric African population structure. Cell, 171(1), 59-71.
79. Pickrell, J. K., & Reich, D. (2014). Toward a new history and geography of human genes informed by ancient DNA. Trends in Genetics, 30(9), 377-389.
80. Reich, D. (2018). Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past. Pantheon.
81. Krause, J., & Trappe, T. (2021). A Short History of Humanity: A New History of Old Europe. Random House.
82. Slatkin, M. (2008). Genic selection in populations of variable size. Genetics, 179(1), 517-524.
83. Slatkin, M., & Hudson, R. R. (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129(2), 555-562.
84. Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9(3), 552-569.
85. Harpending, H. C., Sherry, S. T., Rogers, A. R., & Stoneking, M. (1993). The genetic structure of ancient human populations. Current Anthropology, 34(4), 483-496.
86. Sherry, S. T., Rogers, A. R., Harpending, H., Soodyall, H., Jenkins, T., & Stoneking, M. (1994). Mismatch distributions of mitochondrial DNA reveal recent human population expansions. Human Biology, 66(5), 761-775.
87. Watson, E., Bauer, K., Aman, R., Weiss, G., von Haeseler, A., & Pääbo, S. (1996). Mitochondrial DNA sequence variation and the history of sub-Saharan African populations. Genetics, 144(3), 1271-1287.
88. Excoffier, L., & Schneider, S. (1999). Why hunter-gatherer populations do not show signs of Pleistocene expansions. Proceedings of the National Academy of Sciences, 96(19), 10597-10602.
89. Reich, D. E., & Goldstein, D. B. (1998). Genetic evidence for a recent origin for modern humans. Proceedings of the National Academy of Sciences, 95(14), 8119-8123.
90. Jorde, L. B., Watkins, W. S., Bamshad, M. J., Dixon, M. E., Ricker, C. E., Seielstad, M. T., & Batzer, M. A. (2000). The distribution of human genetic variation: a comparison of mitochondrial, autosomal, and Y-chromosome data. The American Journal of Human Genetics, 66(3), 979-988.
91. Ingman, M., Kaessmann, H., Pääbo, S., & Gyllensten, U. (2000). Mitochondrial genome variation and the origin of modern humans. Nature, 408(6813), 708-713.
92. Underhill, P. A., Shen, P., Lin, A. A., Jin, L., Passarino, G., Yang, W. H., ... & Cavalli-Sforza, L. L. (2000). Y chromosome sequence variation and the history of human populations. Nature Genetics, 26(3), 358-361.
93. Hammer, M. F., Karafet, T. M., Redd, A. J., Jaruzelska, J., Santachiara-Benerecetti, A. S., Soodyall, H., & Zegura, S. L. (2001). Hierarchical patterns of worldwide human Y-chromosome variation. Molecular Biology and Evolution, 18(7), 1189-1203.
94. Marth, G. T., Schuler, G., Yeh, R., Davenport, R., Agarwala, R., Church, D., ... & Sherry, S. T. (2003). Sequence variations in the public human genome data reflect a history of recent population expansion. Genome Research, 13(1), 1-12.
95. Lohmueller, K. E., Indap, A. R., Schmidt, S., Boyko, A. R., Hernandez, R. D., Hubisz, M. J., ... & Bustamante, C. D. (2008). Proportionally more deleterious genetic variation in European than in African populations. Nature, 451(7181), 994-997.
96. Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. (2009). Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genetics, 5(10), e1000695.
97. DeGiorgio, M., Jakobsson, M., & Rosenberg, N. A. (2009). Explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proceedings of the National Academy of Sciences, 106(38), 16057-16062.
98. Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population admixtures using genetic data. PLoS Genetics, 8(11), e1002967.
99. Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., ... & Reich, D. (2012). Ancient admixture in human history. Genetics, 192(3), 1065-1093.
100. Lazaridis, I., Nadel, D., Rollefson, G., Merrett, D. C., Rohland, N., Mallick, S., ... & Reich, D. (2016). Genomic insights into the origin of farming in the ancient Near East. Nature, 536(7617), 419-424.
101. Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., ... & Bustamante, C. D. (2008). Genes mirror geography within Europe. Nature, 456(7218), 98-101.
102. Hellenthal, G., Busby, G. B., Band, G., Wilson, J. F., Capelli, C., Falush, D., & Myers, S. (2014). A genetic atlas of human admixture history. Science, 343(6172), 747-751.
103. Gazave, E., Teshima, K. M., Lazzaro, B. P., & Clark, A. G. (2011). The signature of local adaptation in the presence of gene flow. Molecular Biology and Evolution, 28(11), 3047-3057.
104. Zhao, B., Li, J., Sinha, S., Qin, Z., Kou, S. H., Xiao, F., ... & Lei, H. (2024). Pathogenic variants in human DNA damage repair genes mostly arose in recent human history. BMC Cancer, 24(1), 415.
105. Wang, X., Jiang, T., Shen, A., Chen, Y., Zhou, Y., Liu, J., Zhao, S., Chen, S., Ren, J., & Zhao, Q. (2025). CaMutQC: An R package for integrative quality control and filtration of cancer somatic mutations. Comput Struct Biotechnol J, 27, 3147-3154.
106. Kulyamzin, S., Leibu, R., Newman, H., Ehrenberg, M., Goldenberg-Cohen, N., Zayit-Soudry, S., Mezer, E., Rotenstreich, Y., Deitch, I., Panneman, D. M., Zur, D., Chervinsky, E., Shalev, S. A., Cremers, F. P. M., Sharon, D., & Roosing, S., Ben-Yosef, T. (2025). Phenotypic and Genotypic Characterization of 171 Patients with Syndromic Inherited Retinal Diseases Highlights the Importance of Genetic Testing for Accurate Clinical Diagnosis. Genes (Basel), 16(7), 745.
107. Merkuryeva, E. S., Nagornova, T. S., Kenis, V. M., Deviataikina, A. S., Akimova, D. B., Buklaev, D. S., Dantsev, I. S., Dulush, A. O., Zakharova, E. Y., & Markova, T. V. (2025). Molecular and Clinical Aspects of Osteogenesis Imperfecta Type VI: A Case Series with Novel SERPINF1 Gene Variants. Int J Mol Sci, 26(13), 6200.
108. Heo, J. Y., & Kim, J. H. (2025). Assessing the performance of 28 pathogenicity prediction methods on rare single nucleotide variants in coding regions. BMC Genomics, 26(1), 641.
109. Messaoud-Khelifi, M., Boulariah-Hadjou, R., Kediha, M. I., Guillot-Noel, L., Guillaud-Bataille, M., Durand, C. M., Ali-Pacha, L., Amer El Khedoud, W., Mochel, F., de Sainte-Agathe, J. M., & Stevanin, G. (2025). Experience in the clinical and genetic diagnosis of a series of Algerian patients with hereditary spastic paraplegias. Neurogenetics, 26(1), 52.
110. Shemirani, R., Belbin, G. M., Cullina, S., Caggiano, C., Gignoux, C., Zaitlen, N., & Kenny, E. E. (2025). SPC: a SPectral Component approach leveraging Identity-by-Descent graphs to address recent population structure in genomic analysis. Genome Res.
111. Philips, S., Lu, P., Fausel, C., Wagner, T., Jiang, G., Shen, F., Cantor, E., Tran, M., Roland, L. M., & Schneider, B. P. (2025). Association of heightened host and tumor immunity with prolonged duration of response to checkpoint inhibition across solid tumors. Sci Rep, 15(1), 13195.
112. Pivirotto, A., Peles, N., & Hey, J. (2025). Allele age estimators designed for whole-genome datasets show only a moderate reduction in performance when applied to whole-exome datasets. G3 (Bethesda), 15(6), jkaf088.
113. Sierant, M. C., Jin, S. C., Bilguvar, K., Morton, S. U., Dong, W., Jiang, W., Lu, Z., Li, B., López-Giráldez, F., Tikhonova, I., Zeng, X., Lu, Q., Choi, J., Zhang, J., Nelson-Williams, C., Knight, J. R., Zhao, H., Cao, J., Mane, S., Sedore, S. C., Gruber, P. J., Lek, M., Goldmuntz, E., Deanfield, J., Giardini, A., Mital, S., Russell, M., Gaynor, J. W., King, E., Wagner, M., Srivastava, D., Shen, Y., Bernstein, D., Porter, G. A. Jr, Newburger, J. W., Seidman, J. G., Roberts, A. E., Yandell, M., Yost, H. J., Tristani-Firouzi, M., Kim, R., Chung, W. K., Gelb, B. D., Seidman, C. E., Brueckner, M., & Lifton, R. P. (2025). Genomic analysis of 11,555 probands identifies 60 dominant congenital heart disease genes. Proc Natl Acad Sci U S A, 122(13), e2420343122.
114. Sugiura, K., Kubo, T., Inoue, S., Nomura, S., Yamada, T., Tobita, T., Kuramoto, Y., Miyashita, Y., Asano, Y., Ochi, Y., Miyagawa, K., Baba, Y., Noguchi, T., Hirota, T., Yamasaki, N., Morita, H., Komuro, I., & Kitaoka, H. (2025). Unveiling Clinical and Genetic Distinctions in Pure-Apical Versus Distal-Dominant Apical Hypertrophic Cardiomyopathy. J Am Heart Assoc, 14(6), e038208.