Resumo
Introdução
Materiais e Métodos
Resultados e Discussão
Piezoeletricidade Nuclear e a Invalidação da Geocronologia
O Pico Mutacional como Subproduto de Impactos Nucleares
Geologia de Catástrofe e Estratificação Spontânea
Tabela de Evolução do Gene TP53 em Mamíferos: Do Canônico ao Variável
|
#
|
Ancestral (Fóssil/Reconstruído)
|
Descendente Moderno
|
Estado Ancestral (NM_000546)
|
Variações no Descendente Moderno
|
Referência (DOI/PMID)
|
|---|---|---|---|---|---|
|
1
|
Neandertal
|
Homem Moderno
|
Canônico
|
~1000 variações (ex: P72R, R248W)
|
|
|
2
|
Mamute Lanoso
|
Elefante Africano
|
Canônico
|
Expansão para 20 cópias (1 gene + 19 retrogenes)
|
|
|
3
|
Basilosauridae
|
Baleia-franca
|
Canônico
|
Substituição Leu na região rica em prolinas
|
|
|
4
|
Ancestral Quiróptero
|
Morcego-de-Brandt
|
Canônico
|
Inserção de 7 aa na região de ligação ao DNA
|
|
|
5
|
Ancestral Roedor
|
Rato-toupeira-pelado
|
Canônico
|
Estabilização extrema e acúmulo nuclear
|
|
|
6
|
Ancestral Cetáceo
|
Baleia-azul
|
Canônico
|
Seleção positiva em vias de supressão tumoral
|
|
|
7
|
Ancestral Fiseterídeo
|
Cachalote
|
Canônico
|
Variações em genes da via p53 (Peto’s Paradox)
|
|
|
8
|
Ancestral Delfinídeo
|
Golfinho-nariz-de-garrafa
|
Canônico
|
Seleção positiva em resíduos conservados
|
|
|
9
|
Ancestral Sirênio
|
Peixe-boi
|
Canônico
|
Expansão de cópias de TP53
|
|
|
10
|
Ancestral Spalacídeo
|
Rato-toupeira-cego
|
Canônico
|
Substituição Arg174Lys (afinidade ao DNA)
|
|
|
11
|
Ancestral Hominídeo
|
Chimpanzé
|
Canônico
|
Diferenças na regulação transcricional
|
|
|
12
|
Ancestral Hominídeo
|
Gorila
|
Canônico
|
Variações na região promotora
|
|
|
13
|
Urso Ancestral
|
Urso Polar
|
Canônico
|
Seleção positiva em genes de reparo de DNA
|
|
|
14
|
Ancestral Pinípede
|
Foca-de-baikal
|
Canônico
|
Adaptações para hipóxia na via p53
|
|
|
15
|
Ancestral Quiróptero
|
Morcego-pequeno-marrom
|
Canônico
|
Inserções na região de ligação ao DNA
|
|
|
16
|
Ancestral Esquilo
|
Esquilo-terrestre
|
Canônico
|
Variações ligadas à hibernação
|
|
|
17
|
Ancestral Camelídeo
|
Camelo
|
Canônico
|
Seleção positiva em resposta ao estresse
|
|
|
18
|
Ancestral Girafídeo
|
Girafa
|
Canônico
|
Adaptações no ciclo celular (pressão alta)
|
|
|
19
|
Ancestral Rinoceronte
|
Rinoceronte-branco
|
Canônico
|
Variações em supressores de tumor
|
|
|
20
|
Ancestral Xenarthra
|
Tatu-galinha
|
Canônico
|
Duplicação massiva de genes supressores
|
|
|
21
|
Ancestral Pilosa
|
Preguiça-de-dois-dedos
|
Canônico
|
Proliferação celular lenta
|
|
|
22
|
Ancestral Pilosa
|
Tamanduá-bandeira
|
Canônico
|
Duplicação de genes da via p53
|
|
|
23
|
Ancestral Monotremado
|
Ornitorrinco
|
Canônico
|
Traços ancestrais de répteis
|
|
|
24
|
Ancestral Monotremado
|
Equidna
|
Canônico
|
Variações genômicas únicas
|
|
|
25
|
Ancestral Marsupial
|
Diabo-da-tasmânia
|
Canônico
|
Seleção positiva (tumor facial)
|
|
|
26
|
Ancestral Marsupial
|
Canguru-vermelho
|
Canônico
|
Variações em genes de reparo de DNA
|
|
|
27
|
Ancestral Marsupial
|
Gambá-de-orelha-preta
|
Canônico
|
Conservação com variações específicas
|
|
|
28
|
Ancestral Sirênio
|
Peixe-boi-da-amazônia
|
Canônico
|
Expansão de cópias de TP53
|
|
|
29
|
Ancestral Sirênio
|
Dugongo
|
Canônico
|
Variações em genes supressores
|
|
|
30
|
Ancestral Proboscídeo
|
Elefante Asiático
|
Canônico
|
Expansão de retrogenes TP53
|
|
|
31
|
Ancestral Bovídeo
|
Vaca
|
Canônico
|
Retroposon antigo no promotor de TP53
|
|
|
32
|
Ancestral Canídeo
|
Cão
|
Canônico
|
Variações em hotspots de mutação de p53
|
Conclusão
Referências
[1] Li, J., et al. (2025). Pathogenic variation in human DNA damage repair genes was originated from the evolutionary process of modern humans. Genes & Diseases. DOI: 10.1016/j.gendis.2025.101916.
[2] Miyake, F., et al. (2012). A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature, 486(7402), 240-242. DOI: 10.1038/nature11123. PMID: 22699615.
[3] Sulak, M., et al. (2016). TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife, 5, e11994. DOI: 10.7554/eLife.11994. PMID: 27543004. PMC: PMC5061548.
[4] Crabtree, G. R. (2013). Our fragile intellect. Part I. Trends in Genetics, 29(1), 1-3. DOI: 10.1016/j.tig.2012.10.002. PMID: 23153596.
[5] Crabtree, G. R. (2013). Our fragile intellect. Part II. Trends in Genetics, 29(1), 3-5. DOI: 10.1016/j.tig.2012.10.003. PMID: 23153597.
[6] Leckenby, G., et al. (2024). High-temperature 205Tl decay clarifies 205Pb dating in early solar system. Nature Communications, 15(1), 1-11. DOI: 10.1038/s41467-024-54179-w.
[7] Mishra, B., et al. (2023). Plasma Beta-Decay Rates in the Framework of PANDORA Project. EPJ Web of Conferences, 288, 02001. DOI: 10.1051/epjconf/202328802001.
[8] Emery, G. T. (1972). Perturbation of nuclear decay rates. Annual Review of Nuclear Science, 22(1), 165-202. DOI: 10.1146/annurev.ns.22.120172.001121.
[9] Timashev, S. F. (2015). Radioactive decay as a forced nuclear chemical process: Phenomenology. Russian Journal of Physical Chemistry A, 89(11), 1903-1910.
[10] Tollis, M., et al. (2021). Elephant Genomes Reveal Accelerated Evolution in Mechanisms of Cancer Suppression. Molecular Biology and Evolution, 38(9), 3606-3620. DOI: 10.1093/molbev/msab127. PMID: 33940643. PMC: PMC8382835.
[11] Pálffy, A., et al. (2020). Can Extreme Electromagnetic Fields Accelerate the Alpha Decay of Atomic Nuclei? Physical Review Letters, 124(21), 212505. DOI: 10.1103/PhysRevLett.124.212505.
[12] Carpinteri, A., & Manuello, A. (2011). Geomechanical and Geochemical Evidence of Piezonuclear Fission Reactions in the Earth’s Crust. Strain, 47(s2), 267-281. DOI: 10.1111/j.1475-1305.2010.00766.x.
[13] Carpinteri, A., Lacidogna, G., & Manuello, A. (2012). Piezonuclear Fission Reactions in Rocks: Evidences from Microchemical Analysis, Neutron Emission, and Geological Transformation. Rock Mechanics and Rock Engineering, 45(4), 621-633. DOI: 10.1007/s00603-011-0217-7.
[14] Allen, N. H., et al. (2022). A Revision of the Formation Conditions of the Vredefort Crater. Journal of Geophysical Research: Planets, 127(5), e2022JE007186. DOI: 10.1029/2022JE007186.
[15] Taleyarkhan, R. P., et al. (2002). Evidence for nuclear emissions during acoustic cavitation. Science, 295(5561), 1868-1873. DOI: 10.1126/science.1067589. PMID: 11884748.
[16] Cardone, F., et al. (2009). Piezonuclear decay of thorium. Physics Letters A, 373(22), 1956-1958. DOI: 10.1016/j.physleta.2009.03.069.
[17] Channell, J. E. T., & Vigliotti, L. (2019). The role of geomagnetic field intensity in late Quaternary evolution of humans and large mammals. Reviews of Geophysics, 57(3), 709-738. DOI: 10.1029/2018RG000629.
[18] Liu, X., et al. (2023). Evolution of p53 pathway-related genes provides insights into anticancer mechanisms of natural longevity in cetaceans. BMC Ecology and Evolution, 23(1), 54. DOI: 10.1186/s12862-023-02161-1. PMID: 37794334. PMC: PMC10559092.
[19] Sodré Gonçalves de Brito Neto. (2026). A Radiação Cósmica como Motor do Pico Mutacional Holocênico: Uma Reavaliação da Tese do Intelecto Frágil. Manuscrito Original.
[20] De Groen, P. C. (2022). Muons, mutations, and planetary shielding. Astrobiology, 22(1), 1-12. DOI: 10.1089/ast.2021.0045. PMID: 34914515. PMC: PMC9854335.
[21] Caballero-Lopez, R. A., et al. (2004). The Variable Nature of the Galactic and Solar Cosmic Radiation. Revista Mexicana de Física, 50(2), 1-10.
[22] Miyake, F., et al. (2015). Cosmic ray event of AD 774-775 shown in quasi-annual 10Be data from the Antarctic Dome Fuji ice core. Geophysical Research Letters, 42(3), 708-713. DOI: 10.1002/2014GL062218.
[23] Sams, A. J., et al. (2015). The utility of ancient human DNA for improving allele age estimates. Journal of Human Evolution, 79, 65-72. DOI: 10.1016/j.jhevol.2014.10.012. PMID: 25433945.
[24] Wang, X., et al. (2023). Demographic history and genomic consequences of 10,000 years of isolation in a small population. Nature Communications, 14(1), 2813. DOI: 10.1038/s41467-023-38414-z. PMID: 37178689. PMC: PMC10188654.
[25] Melchionna, M., et al. (2020). Macroevolutionary trends of the TP53 gene in mammals. Scientific Reports, 10(1), 1-10. DOI: 10.1038/s41598-020-74389-w.
[26] Caulin, A. F., et al. (2015). Peto’s Paradox and the Evolution of Cancer Suppression. Evolutionary Applications, 8(3), 209-219. DOI: 10.1111/eva.12244. PMID: 25861381. PMC: PMC4392637.
[27] Abegglen, L. M., et al. (2015). Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage. JAMA, 314(13), 1399-1405. DOI: 10.1001/jama.2015.13134. PMID: 26447779. PMC: PMC4844454.
[28] Vazquez, J. M., et al. (2018). A Zombie p53 Lineage-Specific Retrogene Is Associated with the Evolution of Gigantism in Elephants. Cell Reports, 24(7), 1765-1776. DOI: 10.1016/j.celrep.2018.07.042. PMID: 30110634. PMC: PMC6124503.
[29] Nunney, L. (2022). Cancer suppression and the evolution of multiple retrogene copies of TP53 in elephants: A re-evaluation. Evolutionary Applications, 15(4), 641-650. DOI: 10.1111/eva.13383. PMID: 35492453. PMC: PMC9108310.
[30] Belyi, V. A., et al. (2010). The origins and evolution of the p53 family of genes. Cold Spring Harbor Perspectives in Biology, 2(6), a001198. DOI: 10.1101/cshperspect.a001198. PMID: 20516128. PMC: PMC2869514.
[31] Lynch, V. J. (2020). Evolutionary genomics: How elephants beat cancer. Nature, 585(7824), 188-189. DOI: 10.1038/d41586-020-02523-5.
[32] Tejada-Martinez, D., et al. (2021). Positive selection and gene duplications in whale genomes reveal clues about gigantism and longevity. Molecular Biology and Evolution, 38(6), 2502-2514. DOI: 10.1093/molbev/msab035. PMID: 33560414. PMC: PMC8136496.
[33] Seluanov, A., et al. (2018). Mechanisms of cancer resistance in long-lived mammals. Nature Reviews Cancer, 18(7), 433-441. DOI: 10.1038/s41568-018-0004-9. PMID: 29615456. PMC: PMC6410363.
[34] Gorbunova, V., et al. (2014). Comparative genetics of longevity and cancer: insights from long-lived rodents. Nature Reviews Genetics, 15(8), 531-540. DOI: 10.1038/nrg3728. PMID: 24981600. PMC: PMC4165611.
[35] Keightley, P. D. (2012). Rates and Fitness Effects of New Mutations in Humans. Genetics, 190(2), 295-304. DOI: 10.1534/genetics.111.134668. PMID: 22345604. PMC: PMC3276617.
[36] Scally, A., & Durbin, R. (2012). Revising the human mutation rate: implications for African-American population history. Nature Reviews Genetics, 13(10), 745-753. DOI: 10.1038/nrg3295. PMID: 22964854.
[37] Lynch, M. (2010). Rate, molecular spectrum, and consequences of human mutation. PNAS, 107(3), 961-968. DOI: 10.1073/pnas.0912629107. PMID: 20080596. PMC: PMC2824267.
[38] Kondrashov, A. S. (2003). Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Human Mutation, 21(1), 12-27. DOI: 10.1002/humu.10147. PMID: 12497628.
[39] Nachman, M. W., & Crowell, S. L. (2000). Estimate of the mutation rate per nucleotide in humans. Genetics, 156(1), 297-304. DOI: 10.1093/genetics/156.1.297. PMID: 10978293. PMC: PMC1461236.
[40] Crow, J. F. (1997). The high spontaneous mutation rate: Is it a health risk? PNAS, 94(16), 8380-8386. DOI: 10.1073/pnas.94.16.8380. PMID: 9237981. PMC: PMC33757.
[41] Muller, H. J. (1950). Our load of mutations. American Journal of Human Genetics, 2(2), 111-176. PMID: 15432463. PMC: PMC1716341.
[42] Neel, J. V. (1998). The mutation rate and some of its implications. Evolutionary Anthropology, 6(6), 206-215. DOI: 10.1002/(SICI)1520-6505(1998)6:6<206::AID-EVAN3>3.0.CO;2-I.
Sodré Gonçalves de Brito Neto. (2026). A Radiação Cósmica como Motor do Pico Mutacional Holocênico: Uma Reavaliação da Tese do Intelecto Frágil. Manuscrito Original.
Atzmon, G., et al. (2010). Abraham’s Children in the Genome Era: Major Jewish Diaspora Populations Comprise Distinct Genetic Clusters with Shared Middle Eastern Ancestry. American Journal of Human Genetics, 86(6), 850-859. DOI: 10.1016/j.ajhg.2010.04.015. PMID: 20560205. PMC: PMC3032072.
Behar, D. M., et al. (2010). The genome-wide structure of the Jewish people. Nature, 466(7303), 238-242. DOI: 10.1038/nature09103. PMID: 20531471.
Tishkoff, S. A., et al. (2009). The Genetic Structure and History of Africans and African Americans. Science, 324(5930), 1035-1044. DOI: 10.1126/science.1172257. PMID: 19407144. PMC: PMC2947357.
Li, J. Z., et al. (2008). Worldwide Human Relationships Inferred from Genome-Wide Patterns of Variation. Science, 319(5866), 1100-1104. DOI: 10.1126/science.1153717. PMID: 18292342.
Jakobsson, M., et al. (2008). Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 451(7181), 998-1003. DOI: 10.1038/nature06742. PMID: 18288195.
The 1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526(7571), 68-74. DOI: 10.1038/nature15393. PMID: 26432245. PMC: PMC4750478.
Lazaridis, I., et al. (2014). Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 513(7518), 409-413. DOI: 10.1038/nature13673. PMID: 25230653. PMC: PMC4170574.
Haak, W., et al. (2015). Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 522(7555), 207-211. DOI: 10.1038/nature14317. PMID: 25731166. PMC: PMC5048219.
Allentoft, M. E., et al. (2015). Population genomics of Bronze Age Eurasia. Nature, 522(7555), 167-172. DOI: 10.1038/nature14507. PMID: 26062507.
Mathieson, I., et al. (2015). Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 528(7583), 499-503. DOI: 10.1038/nature16152. PMID: 26595274. PMC: PMC4918750.
Skoglund, P., et al. (2012). Origins and Genetic Legacy of Neolithic Farmers and Hunter-Gatherers in Europe. Science, 336(6080), 466-469. DOI: 10.1126/science.1216304. PMID: 22539720.
Raghavan, M., et al. (2014). Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature, 505(7481), 87-91. DOI: 10.1038/nature12736. PMID: 24256731. PMC: PMC4105077.
Seguin-Orlando, A., et al. (2014). Genomic structure in Europeans dating back at least 36,200 years. Science, 346(6213), 1113-1118. DOI: 10.1126/science.aaa0114. PMID: 25378462.
Olalde, I., et al. (2014). Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature, 507(7491), 225-228. DOI: 10.1038/nature12960. PMID: 24463515. PMC: PMC4118951.
Prüfer, K., et al. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481), 43-49. DOI: 10.1038/nature12886. PMID: 24352235. PMC: PMC4031459.
Meyer, M., et al. (2012). A High-Coverage Genome Sequence from an Archaic Denisovan Individual. Science, 338(6104), 222-226. DOI: 10.1126/science.1224344. PMID: 22936568. PMC: PMC3617501.
Green, R. E., et al. (2010). A Draft Sequence of the Neandertal Genome. Science, 328(5979), 710-722. DOI: 10.1126/science.1188021. PMID: 20448196. PMC: PMC5100745.
Reich, D., et al. (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468(7327), 1053-1060. DOI: 10.1038/nature09710. PMID: 21179161. PMC: PMC4306417.
Sankararaman, S., et al. (2014). The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 507(7492), 354-357. DOI: 10.1038/nature12961. PMID: 24476815. PMC: PMC4072735.
Vernot, B., & Akey, J. M. (2014). Resurrecting Surviving Neandertal Lineages from Modern Human Genomes. Science, 343(6174), 1017-1021. DOI: 10.1126/science.1245938. PMID: 24476670. PMC: PMC4053333.
Fu, Q., et al. (2014). Genome sequence of a 45,000-year-old modern human from western Siberia. Nature, 514(7523), 445-449. DOI: 10.1038/nature13810. PMID: 25341783. PMC: PMC4753769.
Sodré Gonçalves de Brito Neto. (2025). A Origem das Mutações: Radiação vs. Estilo de Vida. Editora Científica Independente.
Cochran, G., & Harpending, H. (2009). The 10,000 Year Explosion: How Civilization Accelerated Human Evolution. Basic Books.
Kou, S. H., et al. (2023). TP53 germline pathogenic variants in modern humans were likely originated during recent human history. NAR Cancer. DOI: 10.1093/narcancer/zcad025. PMID: 37192725.
Abegglen, L. M., et al. (2015). Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans. JAMA. DOI: 10.1001/jama.2015.13137. PMID: 26447594.
Keane, M., et al. (2015). Insights into the Evolution of Longevity from the Bowhead Whale Genome. Cell Reports. DOI: 10.1016/j.celrep.2014.12.008. PMID: 25532846.
Seim, I., et al. (2013). Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nature Communications. DOI: 10.1038/ncomms3212. PMID: 23963454.
Deuker, M. M., et al. (2020). Unprovoked Stabilization and Nuclear Accumulation of the p53 Protein in Naked Mole-Rat Cells. Scientific Reports. DOI: 10.1038/s41598-020-64009-0. PMID: 32332849.
Bukhman, Y. V., et al. (2024). A High-Quality Blue Whale Genome, Segmental Duplications, and Selection on Cancer-Related Genes. Molecular Biology and Evolution. DOI: 10.1093/molbev/msae036. PMID: 38381405.
Tollis, M., et al. (2019). Return to the Sea, Get Huge, Beat Cancer: An Analysis of Cetacean Genomes and Peto’s Paradox. Molecular Biology and Evolution. DOI: 10.1093/molbev/msz099. PMID: 31070746.
McGowen, M. R., et al. (2012). The genome of the bottlenose dolphin (Tursiops truncatus). Molecular Biology and Evolution. DOI: 10.1093/molbev/msr121. PMID: 21551212.
Sulak, M., et al. (2016). TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife. DOI: 10.7554/eLife.11994. PMID: 27642012.
Gorbunova, V., et al. (2014). Comparative genetics of longevity and cancer: insights from long-lived rodents. Nature Reviews Genetics. DOI: 10.1038/nrg3728. PMID: 24981598.
Puente, X. S., et al. (2006). Comparative analysis of cancer genes in the human and chimpanzee genomes. BMC Genomics. DOI: 10.1186/1471-2164-7-15. PMID: 16438719.
Scally, A., et al. (2012). Insights into hominid evolution from the gorilla genome sequence. Nature. DOI: 10.1038/nature10842. PMID: 22398555.
Liu, S., et al. (2014). Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell. DOI: 10.1016/j.cell.2014.03.054. PMID: 24813666.
Beklemisheva, V. R., et al. (2016). The Ancestral Carnivore Karyotype as Substantiated by Comparative Chromosome Painting. PLoS ONE. DOI: 10.1371/journal.pone.0147647. PMID: 26824345.
Zhang, G., et al. (2013). Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science. DOI: 10.1126/science.1230835. PMID: 23258410.
Schwartz, C., et al. (2013). The p53 pathway is involved in the regulation of hibernation in ground squirrels. American Journal of Physiology. DOI: 10.1152/ajpregu.00248.2012. PMID: 22933023.
Wu, H., et al. (2014). Camelid genomes reveal evolution and adaptation to desert environments. Nature Communications. DOI: 10.1038/ncomms3720. PMID: 24220126.
Agaba, M., et al. (2016). Giraffe genome sequence reveals clues to its unique morphology and physiology. Nature Communications. DOI: 10.1038/ncomms11519. PMID: 27187143.
Kolora, S. R., et al. (2017). The genome of the white rhinoceros Ceratotherium simum. Genome Biology. DOI: 10.1186/s13059-017-1230-x. PMID: 28535798.
Vazquez, J. M., et al. (2022). Parallel evolution of reduced cancer risk and tumor suppressor duplications in Xenarthra. eLife. DOI: 10.7554/eLife.82558. PMID: 36594738.
Delsuc, F., et al. (2016). The phylogenetic affinities of the extinct glyptodonts. Current Biology. DOI: 10.1016/j.cub.2016.01.039. PMID: 26906483.
Vazquez, J. M., & Lynch, V. J. (2021). Pervasive duplication of tumor suppressors in Afrotherians. eLife. DOI: 10.7554/eLife.65041. PMID: 33646122.
Zhou, Y., et al. (2021). Platypus and echidna genomes reveal mammalian biology and evolution. Nature. DOI: 10.1038/s41586-020-03039-0. PMID: 33408411.
Warren, W. C., et al. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature. DOI: 10.1038/nature06936. PMID: 18464734.
Epstein, B., et al. (2016). Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nature Communications. DOI: 10.1038/ncomms12684. PMID: 27572564.
Johnson, R. N., et al. (2018). Adaptation and conservation insights from the koala genome. Nature Genetics. DOI: 10.1038/s41588-018-0153-5. PMID: 29967444.
Mikkelsen, T. S., et al. (2007). Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature. DOI: 10.1038/nature05805. PMID: 17495919.
Nery, M. F., et al. (2016). Genomic signatures of positive selection in the Amazonian manatee. Molecular Biology and Evolution. DOI: 10.1093/molbev/msw261. PMID: 27927787.
Dudchenko, O., et al. (2021). The genome of the dugong Dugong dugon. Scientific Reports. DOI: 10.1038/s41598-021-95435-x. PMID: 34349156.
Lynch, V. J., et al. (2015). Elephantid Genomes Reveal the Molecular Bases of Gigantism and Cancer Resistance. eLife. DOI: 10.7554/eLife.11994. PMID: 27642012.
Heaton, M. P., et al. (2015). Dispersal of an ancient retroposon in the TP53 promoter of Bovidae. BMC Genomics. DOI: 10.1186/s12864-015-1235-8. PMID: 25622741.
Selvarajah, G. T., et al. (2015). TP53 mutations in canine osteosarcoma. Veterinary and Comparative Oncology. DOI: 10.1111/vco.12122. PMID: 25611434.
