Sodré GB Neto
Tabela de Ranking Comparativa da Eficiência de Administração de Curcumina
|
Ranking
|
Via de Administração
|
Biodisponibilidade (Geral)
|
Eficiência e Aplicabilidade Clínica
|
Notas Chave
|
|
1
|
Intravenosa (IV)
|
100% (Absoluta)
|
Alta eficiência sistêmica, mas baixa aplicabilidade clínica de rotina.
|
Usada como referência farmacocinética. Caracterizada por rápida eliminação e meia-vida curta .
|
|
2
|
Intramuscular (IM)
|
Alta (com formulações otimizadas)
|
Alta eficiência para liberação sustentada.
|
Demonstra potencial para liberação sustentada e concentrações plasmáticas elevadas com o uso de nanossuspensões, conforme estudos pré-clínicos .
|
|
3
|
Intraperitoneal (IP)
|
Alta (em modelos animais)
|
Alta eficiência em estudos pré-clínicos.
|
Usada em modelos animais para evitar o metabolismo de primeira passagem e atingir altas concentrações em tecidos específicos . Não é uma via comum em humanos.
|
|
4
|
Oral (Formulações Otimizadas)
|
Moderada a Alta (Relativa)
|
Maior aplicabilidade clínica e aceitação pelo paciente.
|
Biodisponibilidade significativamente melhorada (até 20x ou mais) em comparação com a curcumina pura, através de formulações como micelas, lipossomas, fitossomas e adjuvantes (ex: piperina) .
|
|
5
|
Oral (Curcumina Pura)
|
Muito Baixa (<1%)
|
Baixa eficiência.
|
Absorção limitada, metabolismo rápido (conjugação) e eliminação sistêmica rápida, resultando em baixos níveis plasmáticos .
|
50 Artigos Científicos sobre Curcumina e Vias de Administração
|
#
|
Título do Artigo
|
DOI
|
PMID
|
PMC
|
Link de Acesso
|
|
1
|
Natural products in drug discovery: Advances and opportunities.
|
10.1038/s41573-020-00114-z
|
33495610
|
PMC7838874
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
2
|
Counting on natural products for drug design.
|
10.1038/nchem.2479
|
27196619
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
3
|
Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems.
|
10.1155/2013/848043
|
24348508
|
PMC3863558
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
4
|
Emerging Technologies for Improving Bioavailability of Polyphenols.
|
10.2174/1573401311666151015213704
|
–
|
–
|
[DOI] [Google Scholar]
|
|
5
|
Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview.
|
10.1016/j.ijpharm.2019.118642
|
31678422
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
6
|
Nutraceutics and delivery systems.
|
10.1080/10611860400003817
|
15537617
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
7
|
The targets of curcumin.
|
10.2174/138945011794815356
|
21355822
|
PMC3052496
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
8
|
Molecular targets of curcumin.
|
10.1007/978-0-387-46401-5_10
|
17569208
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
9
|
Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases.
|
10.1111/bph.13621
|
27638428
|
PMC5381886
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
10
|
CNS Targets for multi-functional drugs in the treatment of Alzheimer?s and Parkinson?s diseases.
|
10.1007/s00702-004-0214-z
|
15729897
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
11
|
Curcumin as a therapeutic agent: The evidence from in vitro, animal and human studies.
|
10.1017/S0007114509993667
|
20021631
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
12
|
Curcumin: From ancient medicine to current clinical trials.
|
10.1007/s00018-008-7452-4
|
18594649
|
PMC2637808
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
13
|
Curcumin: The Indian solid gold.
|
10.1007/978-0-387-46401-5_1
|
17569205
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
14
|
Pharmacology of Curcuma longa.
|
10.1055/s-2006-960004
|
1715691
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
15
|
Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages.
|
10.1006/phrs.1998.0404
|
10091997
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
16
|
Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent.
|
10.1111/j.2042-7158.1973.tb09131.x
|
4719780
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
17
|
Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research.
|
–
|
19594223
|
–
|
[PubMed] [Google Scholar]
|
|
18
|
Antioxidant Potential of Curcumin-A Meta-Analysis of Randomized Clinical Trials.
|
10.3390/antiox9111092
|
33171887
|
PMC7694557
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
19
|
A Review of Curcumin and Its Derivatives as Anticancer Agents.
|
10.3390/ijms20051033
|
30813421
|
PMC6429622
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
20
|
Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease.
|
10.1017/S0007114515004687
|
26765229
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
21
|
Neuroprotective Effects of Curcumin on IL-1beta-Induced Neuronal Apoptosis and Depression-Like Behaviors Caused by Chronic Stress in Rats.
|
10.3389/fncel.2018.00516
|
30588209
|
PMC6295535
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
22
|
Neuroprotective effects of curcumin.
|
10.1007/978-0-387-46401-5_8
|
17569206
|
PMC2527292
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
23
|
Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity.
|
–
|
10516391
|
–
|
[PubMed] [Google Scholar]
|
|
24
|
Molecular mechanisms of anti-angiogenic effect of curcumin.
|
10.1016/S0006-291X(02)02306-9
|
12372304
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
25
|
Curcumin as an inhibitor of angiogenesis.
|
10.1007/978-0-387-46401-5_7
|
17569204
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
26
|
Plant polyphenols as inhibitors of NF-kappaB induced cytokine production-a potential anti-inflammatory treatment for Alzheimer’s disease?
|
10.3389/fnmol.2015.00024
|
25852504
|
PMC4378278
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
27
|
Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis.
|
10.1016/j.bcp.2007.01.005
|
17306211
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
28
|
Combinatmarion treatment with Lactobacillus acidophilus LA-1, vitamin B, and curcumin ameliorates the progression of osteoarthritis by inhibiting the pro-inflammatory mediators.
|
10.1016/j.imlet.2020.10.008
|
33096247
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
29
|
Therapeutic potential of hyaluronic acid/chitosan nanoparticles for the delivery of curcuminoid in knee osteoarthritis and an in vitro evaluation in chondrocytes.
|
10.3892/ijmm.2018.3817
|
30191848
|
PMC6196585
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
30
|
Curcumin Attenuates Environment-Derived Osteoarthritis by Sox9/NF-kB Signaling Axis.
|
10.3390/ijms22147645
|
34299446
|
PMC8308738
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
31
|
Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin.
|
10.1016/S0009-2797(99)00096-4
|
10468377
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
32
|
Iron chelation in the biological activity of curcumin.
|
10.1016/j.freeradbiomed.2005.11.003
|
16360215
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
33
|
Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers.
|
–
|
1362376
|
–
|
[PubMed] [Google Scholar]
|
|
34
|
Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer.
|
–
|
11432860
|
–
|
[PubMed] [Google Scholar]
|
|
35
|
Dose escalation of a curcuminoid formulation.
|
10.1186/1472-6882-6-10
|
16539730
|
PMC1420212
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
36
|
Curcumin, an active component of turmeric (Curcuma longa), and its effects on health.
|
10.1080/10408398.2015.1077195
|
26528952
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
37
|
Metal-mediated DNA damage induced by curcumin in the presence of human cytochrome P450 isozymes.
|
10.1016/S0003-9861(02)00302-8
|
12354562
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
38
|
DNA damage in mouse lymphocytes exposed to curcumin and copper.
|
10.1007/BF03194648
|
17006535
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
39
|
The relationship between the anti-inflammatory effects of curcumin and cellular glutathione content in myelomonocytic cells.
|
10.1016/j.bcp.2005.05.030
|
16005477
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
40
|
Curcumin impairs tumor suppressor p53 function in colon cancer cells.
|
10.1093/carcin/bgh163
|
15247102
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
41
|
Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance.
|
10.1158/1078-0432.CCR-04-0744
|
15492102
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
42
|
The problematic drug delivery and poor bioavailability are the main problems related to the use of this compound.
|
10.1016/j.jff.2016.01.039
|
–
|
–
|
[DOI] [Google Scholar]
|
|
43
|
The chemistry of curcumin: From extraction to therapeutic agent.
|
10.3390/molecules191220091
|
25470298
|
PMC6271565
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
44
|
Improving the solubility and pharmacological efficacy of curcumin by heat treatment.
|
10.1089/adt.2007.064
|
17985824
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
45
|
Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy.
|
10.1186/1477-3155-5-3
|
17352803
|
PMC1838887
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
46
|
Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis.
|
10.1002/cncr.21300
|
16175417
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
47
|
Studies on the in vitro absorption of spice principles–curcumin, capsaicin and piperine in rat intestines.
|
10.1016/j.fct.2007.02.002
|
17383827
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
48
|
Highly bioavailable micellar curcuminoids accumulate in blood, are safe and do not reduce blood lipids and inflammation markers in moderately hyperlipidemic individuals.
|
10.1002/mnfr.201501034
|
27145283
|
–
|
[DOI] [PubMed] [Google Scholar]
|
|
49
|
Rational Design of CYP3A4 Inhibitors: A One-Atom Linker Elongation in Ritonavir-Like Compounds Leads to a Marked Improvement in the Binding Strength.
|
10.3390/ijms22020852
|
33467406
|
PMC7830874
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
|
50
|
Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation.
|
10.1126/science.aar7389
|
29472477
|
PMC5851428
|
[DOI] [PMC free article] [PubMed] [Google Scholar]
|
Referências
Análise Comparativa de Formulações Otimizadas de Curcumina em Estudos Clínicos
Formulações Otimizadas com Melhor Biodisponibilidade Oral
|
Tipo de Formulação
|
Exemplo Comercial
|
Tecnologia Principal
|
Biodisponibilidade Relativa (Aumento em Relação à Curcumina Pura)
|
Referências Chave
|
|
Micelas
|
NovaSOL®
|
Solubilização Micelar
|
Até 185 vezes
|
|
|
Nanopartículas/Dispersões Coloidais
|
Theracurmin®
|
Nanopartículas Coloidais
|
Até 27 vezes
|
|
|
Nanopartículas/Micronização
|
CurcuWin®
|
Partículas de Curcumina Micronizadas/Nanopartículas
|
Até 136 vezes
|
|
|
Fitossomas
|
Meriva®
|
Complexo de Curcumina-Fosfatidilcolina (Lecitina)
|
Até 29 vezes (em comparação com curcumina não formulada)
|
[102]
|
|
Lipídios Sólidos
|
Longvida®
|
Partículas de Curcumina em Lipídios Sólidos (SLCPs)
|
Até 100 vezes (em termos de curcumina livre)
|
|
Destaques das Formulações
Conclusão da Análise
Referências
https://ar.iiarjournals.org/content/33/10/4285
A baixa solubilidade e biodisponibilidade são fatores limitantes para a aplicação clínica da curcumina. O objetivo deste estudo foi desenvolver uma formulação líquida com maior solubilidade e biodisponibilidade sistêmica. Uma formulação com co-solvente, com solubilidade aumentada para 20 mg/mL, foi desenvolvida e otimizada. A farmacocinética da nova formulação foi avaliada em ratos que receberam 30 mg/kg por via intravenosa ou 50 mg/kg por via intramuscular da formulação com co-solvente, em comparação com um grupo controle que recebeu 50 mg/kg de curcumina em DMSO por via intramuscular. As concentrações plasmáticas foram medidas por cromatografia líquida acoplada à espectrometria de massas (LC-MS/MS). A injeção intramuscular da formulação resultou em 30% de biodisponibilidade absoluta e proporcionou liberação sustentada, mantendo as concentrações plasmáticas de curcumina acima de 240 ng/mL por até 4 horas. Um aumento de 29 vezes na concentração plasmática máxima (Cmax ) e de 28 vezes na área sob a curva de concentração plasmática versus tempo (AUC) resultou em um aumento de 28 vezes na biodisponibilidade relativa da formulação com co-solvente. Os resultados aqui apresentados sugerem que a aplicação clínica da curcumina pode ser melhor explorada por meio da administração intramuscular da formulação com co-solvente desenvolvida neste estudo.
https://pubmed.ncbi.nlm.nih.gov/24122994/
https://www.sciencedirect.com/science/article/abs/pii/S0928098713001188
Embora a nanossuspensão tenha apresentado uma eliminação mais lenta do local da injeção após a administração im , em comparação com a microssuspensão (∼5 μm), observou-se uma concentração plasmática máxima de curcumina significativamente maior (69,0 ng/ml) para a primeira do que para a segunda (18,5 ng/ml). Além disso, a nanossuspensão proporcionou concentrações plasmáticas de curcumina e níveis de CurDD no cérebro significativamente mais elevados por pelo menos 15 dias do que a microssuspensão, exceto nos períodos iniciais. Uma única injeção intramuscular da nanossuspensão pareceu reverter a hipotermia induzida por reserpina por pelo menos 13 dias. Este estudo demonstra que a nanossuspensão de CurDD pode atuar como um injetável intramuscular de longa duração para a liberação sustentada de curcumina, potencialmente aplicável para induzir um efeito antidepressivo prolongado.
- An Updated Review of Curcumin in Health Applications: In Vivo Studies and Clinical Trials. [Biomedical and Pharmacology Journal, 2024]
- Curcumin: A Review of Its’ Effects on Human Health. [PMC, 2017]
- Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. [PMC, 2021]
- The Problem of Curcumin and Its Bioavailability. [ScienceDirect, 2018]
- Biomedical Applications and Bioavailability of Curcumin—An Updated Review. [MDPI, 2021]
- Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin. [PMC, 2014]
- Methods Used for Enhancing the Bioavailability of Oral Curcuminoids Used in Intervention Trials: A Systematic Review. [NIH, 2022]
- Targeted therapies of curcumin focus on its therapeutic potential in cancer, inflammation, and other chronic diseases. [ScienceDirect, 2023]
- Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. [PMC, 2013]
- A Comprehensive Review on the Therapeutic Potential of Curcuma longa. [PMC, 2022]
- Curcumin use in the management of oxidative and inflammatory conditions, metabolic syndrome, arthritis, and anxiety (oral administration).
- Oral administration of curcumin (up to 12 g/die) generally well tolerated in human studies.
- Efficacy of oral curcumin in treating arthritis (multiple studies cited).
- Curcumin effects on pain and analgesia via oral doses (multiple studies cited).
- Management of major depressive disorder with oral curcumin supplementation.
- Oral curcumin (500 mg/day) reduced serum lipid peroxide and total cholesterol in human participants.
- The use of piperine to enhance oral bioavailability of curcumin by 2000%.
- Use of nanomicellar oral formulations to improve curcumin uptake.
- Oral administration of curcumin in animal models for cardioprotection against doxorubicin toxicity.
- Role of oral curcumin in managing exercise-induced inflammation and muscle soreness.
- Effects on gut microbiota and homeostasis with oral nanoencapsulated curcumin.
- Curcumin as an adjuvant therapy for symptomatic COVID-19 management (oral capsules).
- Use of phospholipid complexes to enhance oral absorption in human trials.
- Curcumin in combination with turmeric oils as a common oral delivery method in trials.
- Study on different oral formulations (Longvida, NovaSOL) and their pharmacokinetics in healthy males.
- O estudo mencionado no prompt: Nanossuspensão de CurDD como injetável intramuscular de longa duração para efeito antidepressivo sustentado (artigo de origem ou relacionado).
- Intraperitoneal (IP) injection of curcumin shows inhibitory effect against LPS-induced cardiac hypertrophy in rodents.
- IP curcumin reduced the volume of glioma tumors and prolonged survival in mice.
- IP injection inhibited tumorigenicity in human gastric cancer xenograft models.
- Intravenous administration results in 100% bioavailability by definition, but rapid elimination (short half-life).
- Intravenous curcumin shows a broad volume of dispersion and accumulation in some tissues.
- IP injection used to study amelioration of intracerebral hemorrhage damage in animal models.
- Nanoparticle formulations for injectable use to enhance solubility and half-life.
- The use of intravenous administration in pharmacokinetic studies to establish baseline systemic exposure.
- Curcumin’s potential as an effective agent against asthma after IP administration.
- Preclinical studies using various injectable methods (IV, IP) to target specific tissues like the brain or liver.
- Development of curcumin prodrugs for potential injectable use with longer half-lives.
- Intramuscular injection site elimination rate comparison between nano and micro-suspensions (cited in prompt details).
- Sustained release of curcumin into the brain for 15 days following a single IM injection of nanosuspension (cited in prompt details).
- Reversal of reserpine-induced hypothermia via single IM injection of curcumin nanosuspension (cited in prompt details).
- Bioavailability via IP is higher than oral gavage in animal studies.
- Encapsulation of curcumin in liposomes for various applications, including potentially injectable or topical.
- Nanoparticles to improve skin permeation for topical use.
- Formulation in nanoforms to enhance systemic exposure for a wider range of biomedical applications.
- Using protein-curcumin complexes to increase bioactivity and solubility for different routes of administration.
- Colloidal dispersion methods for enhanced administration efficacy.
- Development of hydrogels containing curcumin for localized drug delivery.
- Curcumin as an agent in photodynamic therapy for oral mucositis.
- Review of various innovative materials for improving curcumin’s properties in pharmaceutical products.
- Strategies for enhancing bioavailability through various drug delivery systems show promise for clinical use.